Total No. of Questions: 8]	90	SEAT No.:	
PA-1184		[Total No. of Pages	: 3

[5925]-206					
S.E. (Civil) GEOTECHNICAL ENGINEERING					
Time	: 2	1/2 Hours] [Max. Marks : 70			
Instr	uct	ions to the candidates:			
	1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.			
	2)	Figures to the right indicate full marks.			
	<i>3</i>)	Neat figures must be drawn wherever necessary.			
	<i>4</i>)	Assume suitable data if required.			
	5)	Use of non programmable scientific calculator is allowed.			
Q 1)	a)	Discuss in detail Proctor needle in field compaction control. [6]			
	b)	State any four assumptions in Boussinesq's theory. Mention the formula for calculation of stress in soil by point load and circular load by Boussinesq's theory, with description of each term. [6]			
<i>Q2</i>)	c)	Describe the effect of compaction on properties of soil. [6] OR Differentiate between Standard Proctor Test and Modified Proctor Test.			
Q2)	a)	Draw typical compaction curve for both the tests.			
	b)	What is pressure bulb? Explain its significance and draw a neat sketch of pressure bulb for concentrated point load. [6]			
	c)	A concentrated toad of 25 kN acts on the surface of homogenous soil mass of large extent. Find the stress intensity at a depth of 8 m by using Boussinesq's theory at a horizontal distance of 2.5 m. [6]			
Q 3)	a)	Explain briefly the procedure of conducting Unconfined Compression Test on clayey soil sample. Draw Mohr scircle for the test. [6]			
	b)	State and explain factors affecting shear strength of cohesive and cohesionless soil. [5]			

c)	Two identical soil specimens were tested in a triaxial apparature of the second	aratus. First
	specimen was failed at a deviator stress of 700 kN/m ² wl	nen the cell
	pressure was 200 kN/m ² . Second specimen was failed at a de	viator stress
	of 1300 kN/m ² when the cell pressure was 400 kN/m ² . Determine	ne cohesion
	of soil and angle of internal friction of soil analytically.	[6]

OR

- Q4) a) Determine the shear strength in terms of effective stress on a plane within a saturated soil mass at a point where the total normal stress is 200 kN/m^2 and pore water pressure is 80 kN/m^2 . The shear strength parameters in terms of effective stress are, $c' = 16 \text{ kN/m}^2$ and $\Phi' = 39^0$. [6]
 - b) Explain how shear tests are conducted with different drainage conditions? [5]
 - c) Describe the procedure for Vane Shear Test. [6]
- Q5) a) Explain earth pressure at rest, active earth pressure and passive earth pressure w.r.t. wall movement with sketches.[6]
 - b) Compute the intensity of active earth pressure at a depth of 8 m in dry cohesionless sand with an angle of internal friction 30° and unit weight of 18 kN/m³. [6]
 - c) Derive the equation for lateral earth pressure in active state for dry cohesionless backfill with uniform surcharge. [6]

OR

- Q6) a) A wall with a smooth vertical back, 10 m high, supports a purely cohesive soil with $c = 9.81 \text{ kN/m}^2$ and $\gamma = 17.66 \text{ kN/m}^3$. Determine total active earth pressure against the wall and position of zero pressure before formation of tension crack.
 - b) Explain Rebhann's graphical method for determination of earth pressure on retaining wall. [6]
 - c) Derive the expression for the active state of pressure at any point for a submerged cohesionless backfill along with pressure diagram. [6]

- Explain with neat sketch different modes of slope failure. **Q7**) a) [6]
 - Discuss "Swedish Slip Circle Method" for stability analysis of finite b) slope.
 - Derive the expression for F.O.S. for dry infinite slope in sandy soil. [6] c)

- **Q8**) a) Illustrates causes and remedial measures of landslide. [6]
 - Taylor's Stability Number" for stability analysis of finite slope. b)

[5]

An infinite slope is made of clay with the following properties: c) **[6]**

18 kN/m³, $\gamma' = 9$ kN/m³, c' = 25 kN/m² and $\Phi = 28^{\circ}$.

If the slope angle has an inclination of 350 and height equal to 12 m, determine stability of slope. When,

- The slope is submerged
- There is steady seepage parallel to slope.

mel to P.Ma. 16.29 Bololing St. 11. 15 Braile. St. 11. 15